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Abstract: 6-Azidopurine nucleoside labeled with 15N at N-1 position was synthesized. 15N NMR spectra, 15N-1H and
15N-13C coupling constants were measured. Two well-separated sets of signals for two tautomeric forms were

detected. Copyright # 2007 John Wiley & Sons, Ltd.
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Introduction

Azidopurine nucleotides of general formula 1 easily and

efficiently give photocrosslinking products and were

long ago proposed1 as photoaffinity labels for studies of

protein-DNA/RNA and RNA/RNA interactions.2–4 They

can also potentially posses useful biological activity

and for example 9-(b-D-arabinofuranosyl)-6-azidopur-

ine was proposed as a prodrug for antiviral ara-A.5

Apart from its photochemical and biological activity,

6-azidopurine (as well as 2-azidopurine) system shows

interesting feature of existing in two possible tauto-

meric forms6 of azido-azomethine 1 and fused tetrazole

2 structure (Scheme 1).

The two forms exist in equilibrium, and their inter-

conversion is slow enough to enable studying them

with spectroscopical methods. Extensive studies6,7 of

this phenomenon were performed, leading to the

conclusion that in polar solvents equilibrium is shifted

towards tetrazole form, and that electron-withdrawing

substituents in the pyrimidine ring favor the azido

form.8 Crystallographic data indicate, that 6-azidopur-

ine exists in solid state as pure tetrazole form.9

Equilibrium was studied with the use of different

methods, 1H NMR and 13C NMR being the methods of

choice.10–12 The 15N NMR spectroscopy, apparently the

best natural candidate for this study suffers from low

intensity of signals caused by intrinsic properties of

nitrogen-15 nucleus as well as from low natural

abundance of the isotope. Practically highly concen-

trated solutions or neat liquids are only suitable for

reasonable experiments. For that reason only limited
15N NMR studies of related systems were published.13

To date no 15N NMR data for the compound were

available.

We have synthesized 15N-labeled 6-azidopurine for

mechanistic studies of its photochemical transforma-

tions,14 and measured its 15N NMR spectra.

Results and discussion

Synthesis

The synthesis exploited the described route15 for N-1

labeling of triacetylinosine 3 (Scheme 2). Initial steps of

the synthesis were conducted essentially via the

published procedure, the only difference being that

the intermediate product, N1-nitro-203050-tri-O-acetyli-

nosine 4 was purified by chromatography. The 1-[15N]-

20,30,50-tri-O-acetylinosine 5 was converted into

6-(pyridinium)salt 6 and subjected to substitution with

sodium azide,16 giving the product 7(8) with 88% yield.

Scheme 1
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The 1H and 13C NMR spectra agree with the published

data17–19 for the unlabeled compound.

Having the N-1 labeled compound gave the excellent

opportunity to study the equilibrium with 15N NMR

spectroscopy. Nitrogen-15 resonance signals were well

separated (difference of 2 ppm) and the assignment was

straightforward on the basis of their different 15N-1H

coupling constant.20 Nitrogen nuclei of azido form 7

exhibited grater two-bond coupling constant with

neighboring protons than nitrogens of tetrazolo form

8 (Figure 1).20

As expected, in relatively non-polar chloroform both

forms 7 and 8 could be observed in the ratio of 3:2,

respectively. In the 13C NMR spectrum both carbon

Scheme 2 Reaction conditions i– iii.16 p-Cl-(C6H4)-OP(O)Cl2, pyridine; iv NaN3, DMF, 10min.

Figure 1 15N NMR spectrum of the tautomeric mixture of 7 and 8 in CDCl3. N-1 signal at 253.5ppm (J2
N-H=15.1Hz) belongs to 7,

the one at 251.5ppm (J2
N-H=6.3 Hz) belongs to 8.

44 A. MASTERNAK ET AL.

Copyright # 2007 John Wiley & Sons, Ltd. J Label Compd Radiopharm 2007; 50: 43–46

DOI: 10.1002.jlcr



atoms bonded with the labeled nitrogen atom showed

coupling (see Table 1). In methanol solution only

tetrazolo form was detected.

Except the labeled N-1 resonance signal, we were

able to detect and assign two other nitrogen resonances

in 2D correlation 15N -1H spectrum. The H-8 signals of

both tautomers exhibited cross-peaks with neighboring

N-7 and N-9 atoms (Figure 2).

Due to lower intensity unambiguous assignment

of the remaining four nitrogen signals (N-3 and

azido/tetrazolo atoms) was not possible. All the 13C

resonances were assigned for both tautomers (Table 1).

Experimental

The NMR spectra were recorded at 298K on a Bruker

Advance DRX 600 spectrometer operating at frequen-

cies 600.186 MHz (1H) and 60.816 MHz (15N). Proton

detected 2D spectra were carried out using 5 mm TBI

probe head {1H/31P/BB} with a self-shielded z-gradient

coil (908 1H pulse width 10.6 ms and 15N pulse width

19 ms). 13C NMR spectra were measured on a Varian

Mercury 300 MHz spectrometer operating at

300.071 MHz (1H) and 75.46 MHz (13C). Two-dimen-

sional 1H-15N gradient selected HMBC experiments

were performed using standard pulse sequences from

the Bruker pulse library. The delays for evaluation of

multiple bond couplings were set to 62.5–250 ms. The

chemical shift reproducibility was better than

�0.05 ppm.

All spectra were measured in anhydrous CDCl3 or

CD3OD and the sample concentrations were 5 mg per

600 ml of solvent. Internal TMS was used as a reference

(1H and 13C), 15N NMR spectra were referred to external

neat NH3 and recalculated to nitromethane. The

procedure recommended by IUPAC for indirect

Figure 2 15N-1H HMBC spectrum of 7(8). Cross-peaks for N-7 appear at 168 (7) and 172 (8); for N-9 at 241 (7) and 246.5 (8).

Table 1 Chemical shifta of NMR resonance signals (1H, 13C and 15N) assigned for 7 and 8

Compound H2 H8 H10 H20 H30 H40 H50,500

7 8.60 (15.1) 8.07 6.14 5.87 5.59 4.40 4.38; 4.32
8 9.48 (6.3) 8.30 6.27 5.87 5.54 4.48 4.40; 4.35

C2 C4 C5 C6 C8 C10 C20 C30 C40 C50

7 152.50 (2.5) 151.60 124.52 153.35 (5.1) 142.02 85.68 69.52 72.11 79.41 61.93
8 134.07 (11.2) 141.30 121.99 145.45 (9.7) 141.86 86.35 69.39 72.43 79.65 61.84

N1 N7 N9
7 253.5 168.0 241.0
8 251.5 172.0 246.5

aCDCl3,
1H and 13C in ppm relative to TMS, 15N in ppm relative to nitromethane; ( )}coupling constant with 15N, in Hz.
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referencing (Markley et al., 1998) was used with the

relative frequency factor (X) of 10.13291 MHz.

Syntheses of compounds 516 and 7(8)17 were

repeated according to reported procedures.
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